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Problem Setting

Given a database D of graphs and a frequency 
threshold,

list the set of frequent connected subtrees
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freq. threshold = 1
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Efficiency Measures

Polynomial delay: Time between printing 
consecutive patterns is polynomial in the size of 
the database D

time
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Efficiency Measures

Polynomial delay: Time between printing 
consecutive patterns is polynomial in the size of 
the database D
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Efficiency Measures

Incremental polynomial time: Time between 
printing consecutive patterns is polynomial in the 
size of the database D and the output so far

time
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Efficiency Measures

Incremental polynomial time: Time between 
printing consecutive patterns is polynomial in the 
size of the database D and the output so far
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Efficiency Measures
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Research Question

● Research so far:

Identification of graph 
classes allowing 
incremental polynomial 
time enumeration

Bounded 
Treewidth
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Research Question

● Research so far:

Identification of graph 
classes allowing 
incremental polynomial 
time enumeration

● Question for this work:

Identification of graph 
classes allowing polynomial 
delay enumeration Forests

Bounded Degree
And Treewidth

Cactus Graphs

Outerplanar

Bounded 
Treewidth
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Main Result

Theorem: Frequent subtree mining is possible in 
cactus graph  databases with bounded cycle 
degree with polynomial delay.
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[wikipedia]

Cycle degree 2

Cycle degree 2

Cycle degree 0
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Main Result

Theorem: Frequent subtree mining is possible in 
cactus graph  databases with bounded cycle 
degree with polynomial delay.

Proof Sketch: Based on a generalization of 
[Shamir, Tsur] for pattern matching and a generic 
subgraph mining framework.
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Why is this interesting?

● Many molecular graphs are cactus graphs
● Molecular graphs have very small cycle degrees

Data Set Size Max.CycD Med.CycD Cactus

NCI-HIV 42,687 4 1 50.08%

NCI-2012 249,533 3 1 63.81%

ZINC-leadlike 8,946,757 2 1 72.84%
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Discussion of the Result

● Cycle degree seems a crucial 
parameter for polynomial delay 
enumeration

● If removed, there are two options:
– a) Polynomial delay mining is not 

possible → P ≠ NP
– b) Polynomial delay mining is possible 

→ polynomial delay mining for NP-
complete matching operators is 
possible

Forests

Bounded Degree
And Treewidth

Cactus Graphs

Outerplanar

Bounded 
Treewidth

Cactus Graphs
With BCD
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